Logarithmic Inequalities

https://www.linkedin.com/groups/8313943/8313943-6432892237469876228 If a and b are distinct positive real numbers, prove that

$$\sqrt{ab} \, < \, \frac{a-b}{\ln a - \ln b} \, < \, \frac{a+b}{2}$$

Solution by Arkady Alt, San Jose, California, USA.

Due to symmetry of the inequality we may assume that a > b. Let $x := \ln \frac{a}{b}$.

Then
$$x > 0$$
 and $\sqrt{ab} < \frac{a-b}{\ln a - \ln b} < \frac{a+b}{2} \Leftrightarrow \sqrt{\frac{a}{b}} < \frac{\frac{a}{b} - 1}{\ln \frac{a}{b}} < \frac{\frac{a}{b} + 1}{2} \Leftrightarrow$
(1) $e^{x/2} < \frac{e^x - 1}{x} < \frac{e^x + 1}{2}$.
First we will prove that $e^{x/2} < \frac{e^x - 1}{x}$, for any $x > 0$.
Since $e^{x/2} = 1 + \frac{x}{2} + \sum_{n=2}^{\infty} \frac{x^n}{2^n n!} \Leftrightarrow 1 + xe^{x/2} = 1 + x + \frac{x^2}{2} + \sum_{n=2}^{\infty} \frac{x^{n+1}}{2^n n!} =$
 $1 + x + \frac{x^2}{2} + \sum_{n=3}^{\infty} \frac{x^n}{2^{n-1}(n-1)!}$ and $e^x = 1 + x + \frac{x^2}{2} + \sum_{n=3}^{\infty} \frac{x^n}{n!}$ then
 $e^x - (1 + xe^{x/2}) = \sum_{n=3}^{\infty} x^n \left(\frac{1}{n!} - \frac{1}{2^{n-1}(n-1)!}\right) > 0$ because $\frac{1}{n!} - \frac{1}{2^{n-1}(n-1)!} =$
 $\frac{1}{2^{n-1}n!} (2^{n-1} - n)$ and $2^{n-1} > n$ for any $n \ge 3$ (by Math Induction).
Hence $1 + xe^{x/2} < e^x \Leftrightarrow e^{x/2} < \frac{e^x - 1}{x}$.
Also we have $\frac{e^x - 1}{x} < \frac{e^x + 1}{2} + \frac{1}{2}x\left(1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}\right) \Leftrightarrow \sum_{n=2}^{\infty} \frac{x^n}{n!} < \sum_{n=1}^{\infty} \frac{x^{n+1}}{2 \cdot n!} \Leftrightarrow$
 $1 + x + \sum_{n=2}^{\infty} \frac{x^n}{n!} < 1 + \frac{x}{2} + \frac{1}{2}x\left(1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}\right) \Leftrightarrow \sum_{n=2}^{\infty} \frac{x^n}{n!} < \sum_{n=1}^{\infty} \frac{x^{n+1}}{2 \cdot n!} \Leftrightarrow$
 $\sum_{n=2}^{\infty} \frac{x^n}{n!} < \sum_{n=2}^{\infty} \frac{x^n}{2 \cdot (n-1)!}$ where latter inequality holds for any $x > 0$ since
 $\frac{1}{n!} \le \frac{1}{2 \cdot (n-1)!} \Leftrightarrow 2 \le n$.